Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37954171

RESUMO

Purpose: Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subgroup characterized by a high risk of resistance to chemotherapies and high relapse potential. TNBC shows inter-and intra-tumoral heterogeneity; more than half expresses high EGFR levels and about 30% are classified as HER2-low breast cancers. High PRMT5 mRNA levels are associated with poor prognosis in TNBC and inhibiting PRMT5 impairs the viability of subsets of TNBC cell lines and delays tumor growth in TNBC mice models. TNBC patients may therefore benefit from a treatment targeting PRMT5. The aim of this study was to assess the therapeutic benefit of combining a PRMT5 inhibitor with different chemotherapies used in the clinics to treat TNBC patients, or with FDA-approved inhibitors targeting the HER family members. Methods: The drug combinations were performed using proliferation and colony formation assays on TNBC cell lines that were sensitive or resistant to EPZ015938, a PRMT5 inhibitor that has been evaluated in clinical trials. The chemotherapies analyzed were cisplatin, doxorubicin, camptothecin, and paclitaxel. The targeted therapies tested were erlotinib (EGFR inhibitor), neratinib (EGFR/HER2/HER4 inhibitor) and tucatinib (HER2 inhibitor). Results: We found that PRMT5 inhibition synergized mostly with cisplatin, and to a lesser extent with doxorubicin or camptothecin, but not with paclitaxel, to impair TNBC cell proliferation. PRMT5 inhibition also synergized with erlotinib and neratinib in TNBC cell lines, especially in those overexpressing EGFR. Additionally, a synergistic interaction was observed with neratinib and tucatinib in a HER2-low TNBC cell line as well as in a HER2-positive breast cancer cell line. We noticed that synergy can be obtained in TNBC cell lines that were resistant to PRMT5 inhibition alone. Conclusion: Altogether, our data highlight the therapeutic potential of targeting PRMT5 using combinatorial strategies for the treatment of subsets of TNBC patients.

2.
Cancers (Basel) ; 14(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36230689

RESUMO

Breast cancer is composed of distinct subgroups, triple-negative breast cancer (TNBC), human epidermal growth factor receptor-2 (HER2), luminal A, and luminal B, which are associated with different prognosis. MEP50 is the main partner of the arginine methyltransferase PRMT5 required for its enzymatic activity. Here, we examined MEP50 expression in the different breast cancer subgroups from the transcriptomic data obtained on human breast cancer samples and on normal breast tissues in two cohorts (Curie, n = 141; The Cancer Genome Atlas-TCGA, n = 788). We observed higher levels of MEP50 mRNA in TNBC (Curie, n = 41; TCGA, n = 106) compared to the other breast cancer subgroups and normal breast tissues. Using an online KM-plotter database, which allows survival analyses in a larger number of breast cancer patients, we found that high MEP50 mRNA levels were associated with a more favorable recurrence-free survival (RFS) in TNBC (n = 953, p = 1.2 × 10-4) and luminal B (n = 1353, p = 0.013) tumors, whereas high PRMT5 mRNA levels were associated with worse RFS in these two subgroups (TNBC: n = 442, p = 1.0 × 10-4; luminal B: n = 566, p = 6.8 × 10-3). We next determined the expression and the subcellular localization of MEP50 protein by immunohistochemistry (IHC) in our Curie cohort of breast cancer (n = 94) and normal tissues (n = 7) using a validated MEP50 antibody. MEP50 was more expressed in breast tumors compared to normal breast tissues (p = 0.02). MEP50 was more localized to the cytosol in breast cancer cells compared to normal breast tissue (p = 4 × 10-4), and was more found at the plasma membrane in normal tissues compared to breast tumors (p = 0.01). We also evaluated PRMT5 activity by IHC in our Curie cohort using a validated antibody (H4R3me2s) detecting histone H4 symmetrically dimethylated on Arg3. High levels of H4R3me2s were found in normal breast tissues, whereas the lowest levels of H4R3me2s were observed in TNBC and HER2 breast cancer subgroups. Altogether, our study reports the expression of the PRMT5 cofactor (MEP50) and substrate (H4R3me2s) in breast cancer and highlights the association of PRMT5 and MEP50 mRNA with prognosis in luminal B and TNBC breast cancer subgroups and certain TNBC subtypes.

3.
Cancers (Basel) ; 14(2)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35053470

RESUMO

Identifying new therapeutic strategies for triple-negative breast cancer (TNBC) patients is a priority as these patients are highly prone to relapse after chemotherapy. Here, we found that protein arginine methyltransferase 1 (PRMT1) is highly expressed in all breast cancer subtypes. PRMT1 depletion decreases cell survival by inducing DNA damage and apoptosis in various breast cancer cell lines. Transcriptomic analysis and chromatin immunoprecipitation revealed that PRMT1 regulates the epidermal growth factor receptor (EGFR) and the Wnt signaling pathways, reported to be activated in TNBC. PRMT1 enzymatic activity is also required to stimulate the canonical Wnt pathway. Type I PRMT inhibitors decrease breast cancer cell proliferation and show anti-tumor activity in a TNBC xenograft model. These inhibitors display synergistic interactions with some chemotherapies used to treat TNBC patients as well as erlotinib, an EGFR inhibitor. Therefore, targeting PRMT1 in combination with these chemotherapies may improve existing treatments for TNBC patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...